Combinatorics with definable sets: Euler characteristics and Grothendieck rings

نویسندگان

  • Jan Krajícek
  • Thomas Scanlon
چکیده

We recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of integer polynomials in continuum many variables. We prove the existence of universal strong Euler characteristic on a structure. We investigate the dependence of the Grothendieck ring on the theory of the structure and give a few counterexamples. Finally, we relate some open problems and independence results in bounded arithmetic to properties of particular Grothendieck rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Grothendieck Ring of Varieties and of the Theory of Algebraically Closed Fields

In each characteristic, there is a canonical homomorphism from the Grothendieck ring of varieties to the Grothendieck ring of sets definable in the theory of algebraically closed fields. We prove that this homomorphism is an isomorphism in characteristic zero. In positive characteristics, we exhibit specific elements in the kernel of the corresponding homomorphism of Grothendieck semi rings. Th...

متن کامل

Motives for perfect PAC fields with pro-cyclic Galois group

Denef and Loeser defined a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group. In addition, we define some maps between different Grothendieck rings of definable sets which...

متن کامل

Grothendieck Rings of Laurent Series Fields

We study Grothendieck rings (in the sense of logic) of fields. We prove the triviality of the Grothendieck rings of certain fields by constructing definable bijections which imply the triviality. More precisely, we consider valued fields, for example, fields of Laurent series over the real numbers, over p-adic numbers and over finite fields, and construct definable bijections from the line to t...

متن کامل

Grothendieck rings of Z-valued fields

We prove the triviality of the Grothendieck ring of a Z-valued field K under slight conditions on the logical language and on K. We construct a definable bijection from the plane K to itself minus a point. When we specialize to local fields with finite residue field, we construct a definable bijection from the valuation ring to itself minus a point. At the Edinburgh meeting on the model theory ...

متن کامل

Grothendieck rings of o-minimal expansions of ordered abelian groups

We will calculate completely the Grothendieck rings, in the sense of first order logic, of o-minimal expansions of ordered abelian groups by introducing the notion of the bounded Euler characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of Symbolic Logic

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2000